4.6 Article

Molecular dynamics prediction of thermal conductivity of GaN films and wires at realistic length scales

期刊

PHYSICAL REVIEW B
卷 81, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.155321

关键词

-

资金

  1. United States Department of Energy [DEAC04-94AL85000]

向作者/读者索取更多资源

Recent molecular dynamics simulation methods have enabled thermal conductivity of bulk materials to be estimated. In these simulations, periodic boundary conditions are used to extend the system dimensions to the thermodynamic limit. Such a strategy cannot be used for nanostructures with finite dimensions which are typically much larger than it is possible to simulate directly. To bridge the length scales between the simulated and the actual nanostructures, we perform large-scale molecular dynamics calculations of thermal conductivities at different system dimensions to examine a recently developed conductivity vs dimension scaling theory for both film and wire configurations. We demonstrate that by an appropriate application of the scaling law, reliable interpolations can be used to accurately predict thermal conductivity of films and wires as a function of film thickness or wire radius at realistic length scales from molecular dynamics simulations. We apply this method to predict thermal conductivities for GaN wurtzite nanostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据