4.6 Article

Wannier-function approach to spin excitations in solids

期刊

PHYSICAL REVIEW B
卷 81, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.054434

关键词

-

资金

  1. EU [NMP4-CT-2004-500198]
  2. European Theoretical Spectroscopy Facility e-I3 [INFRA-2007-211956]
  3. Deutsche Forschungsgemeinschaft [1145]

向作者/读者索取更多资源

We present a computational scheme to study spin excitations in magnetic materials from first principles. The central quantity is the transverse spin susceptibility, from which the complete excitation spectrum, including single-particle spin-flip Stoner excitations and collective spin-wave modes, can be obtained. The susceptibility is derived from many-body perturbation theory and includes dynamic correlation through a summation over ladder diagrams that describe the coupling of electrons and holes with opposite spins. In contrast to earlier studies, we do not use a model potential with adjustable parameters for the electron-hole interaction but employ the random-phase approximation. To reduce the numerical cost for the calculation of the four-point scattering matrix we perform a projection onto maximally localized Wannier functions, which allows us to truncate the matrix efficiently by exploiting the short spatial range of electronic correlation in the partially filled d or f orbitals. Our implementation is based on the full-potential linearized augmented-plane-wave method. Starting from a ground-state calculation within the local-spin-density approximation (LSDA), we first analyze the matrix elements of the screened Coulomb potential in the Wannier basis for the 3d transition-metal series. In particular, we discuss the differences between a constrained nonmagnetic and a proper spin-polarized treatment for the ferromagnets Fe, Co, and Ni. The spectrum of single-particle and collective spin excitations in fcc Ni is then studied in detail. The calculated spin-wave dispersion is in good overall agreement with experimental data and contains both an acoustic and an optical branch for intermediate wave vectors along the [1 0 0] direction. In addition, we find evidence for a similar double-peak structure in the spectral function along the [1 1 1] direction. To investigate the influence of static correlation we finally consider LSDA+U as an alternative starting point and show that, together with an improved description of the Fermi surface, it yields a more accurate quantitative value for the spin-wave stiffness constant, which is overestimated in the LSDA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据