4.6 Article

Temperature dependence of the charge carrier mobility in disordered organic semiconductors at large carrier concentrations

期刊

PHYSICAL REVIEW B
卷 81, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.045202

关键词

-

资金

  1. AD Project [UA-10/2009]
  2. NAS of Ukraine [10/09-H]
  3. Ministry of Education and Science of Ukraine
  4. Fond der Chemischen Industrie
  5. NFN [S9706, S9711]
  6. Austrian Foundation for Science and Research

向作者/读者索取更多资源

Temperature-activated charge transport in disordered organic semiconductors at large carrier concentrations, especially relevant in organic field-effect transistors (OFETs), has been thoroughly considered using a recently developed analytical formalism assuming a Gaussian density-of-states (DOS) distribution and Miller-Abrahams jump rates. We demonstrate that the apparent Meyer-Neldel compensation rule (MNR) is recovered regarding the temperature dependences of the charge carrier mobility upon varying the carrier concentration but not regarding varying the width of the DOS. We show that establishment of the MNR is a characteristic signature of hopping transport in a random system with variable carrier concentration. The polaron formation was not involved to rationalize this phenomenon. The MNR effect has been studied in a OFET based on C-60 films, a material with negligible electron-phonon coupling, and successfully described by the present model. We show that this phenomenon is entirely due to the evolution of the occupational DOS profile upon increasing carrier concentration and this mechanism is specific to materials with Gaussian-shaped DOS. The suggested model provides compact analytical relations which can be readily used for the evaluation of important material parameters from experimentally accessible data on temperature dependence of the mobility in organic electronic devices. Experimental results on temperature-dependent charge mobility reported before for organic semiconductors by other authors can be well interpreted by using the model presented in this paper. In addition, the presented analytical formalism predicts a transition to a Mott-type charge carrier hopping regime at very low temperatures, which also manifests a MNR effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据