4.6 Article

Excess energy and deformation along free edges of graphene nanoribbons

期刊

PHYSICAL REVIEW B
卷 81, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.155410

关键词

-

资金

  1. National Science Foundation [CMMI-0926851]
  2. Directorate For Engineering
  3. Div Of Civil, Mechanical, & Manufact Inn [0926851] Funding Source: National Science Foundation

向作者/读者索取更多资源

Change in the bonding environment at the free edges of graphene monolayer leads to excess edge energy and edge force, depending on the edge morphology (zigzag or armchair). By using a reactive empirical bond-order potential and atomistic simulations, we show that the excess edge energy in free-standing graphene nanoribbons can be partially relaxed by both in-plane and out-of-plane deformation. The excess edge energy and edge force are calculated for graphene nanoribbons with parallel zigzag or armchair edges. Depending on the longitudinal constraint, the compressive edge force leads to either in-plane elongation of the ribbon or out-of-plane buckling deformation. In the former case, the longitudinal strain is inversely proportional to the ribbon width. In the latter case, energy minimization predicts an intrinsic wavelength for edge buckling to be 6.2 nm along the zigzag edge and 8.0 nm along the armchair edge. For graphene nanoribbons of width less than the intrinsic wavelength, interaction between the two free edges becomes significant, leading to antiphase correlation of the buckling waves.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据