4.6 Article

Early stage of the electron kinetics in swift heavy ion tracks in dielectrics

期刊

PHYSICAL REVIEW B
卷 82, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.82.125425

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [RE 1141/11-1]

向作者/读者索取更多资源

A Monte Carlo approach was applied for simulations of the early stage (first tens of femtosecond) of kinetics of the electronic subsystem of silica (SiO2) in tracks of swift heavy ions (SHIs) decelerated in the electronic stopping regime. At the first step multiple ionizations of target atoms by a projectile (Ca+19, E = 11.4 MeV/amu) were described that gave the initial spatial distributions of free electrons having different momenta as well as distributions of holes in different atomic shells. Spatial propagation of fast electrons results in secondary ionizations of target atoms as well as in energy transfer to the lattice at times much shorter than the times of atomic oscillations (phonons). The well detected front of excitation in the electronic and ionic subsystems is formed due to this propagation which cannot be described by models based on diffusion mechanisms (e.g., parabolic equations of heat diffusion). At times similar to 10 fs after the projectile passage, about similar to 0.1% of the energy is already transferred to the lattice. About 63% of the energy deposited by the ion is accumulated in holes at these times. Calculated distributions of these holes through the atomic shells are in excellent agreement with the spectroscopy experiments. Comparison with these experiments demonstrated also that relaxation of the electronic subsystem in SHI tracks in solids cannot be described adequately without taking into account intra-atomic and interatomic Auger (Knotek-Feibelman) processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据