4.6 Article

Interaction quench in the Hubbard model: Relaxation of the spectral function and the optical conductivity

期刊

PHYSICAL REVIEW B
卷 81, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.115131

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG)
  2. Swiss National Science Foundation [PP002-118866]

向作者/读者索取更多资源

We use nonequilibrium dynamical mean-field theory in combination with a recently developed Quantum Monte Carlo impurity solver to study the real-time dynamics of a Hubbard model which is driven out of equilibrium by a sudden increase in the on-site repulsion U. We discuss the implementation of the self-consistency procedure and some important technical improvements of the QMC method. The exact numerical solution is compared to iterated perturbation theory, which is found to produce accurate results only for weak interaction or short times. Furthermore, we calculate the spectral functions and the optical conductivity from a Fourier transform on the finite Keldysh contour, for which the numerically accessible time scales allow to resolve the formation of Hubbard bands and a gap in the strongly interacting regime. The spectral function, and all one-particle quantities that can be calculated from it, thermalize rapidly at the transition between qualitatively different weak- and strong-coupling relaxation regimes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据