4.6 Article

First-principles study of epitaxial strain as a method of B4→BCT stabilization in ZnO, ZnS, and CdS

期刊

PHYSICAL REVIEW B
卷 82, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.82.153408

关键词

-

向作者/读者索取更多资源

Density-functional-theory calculations have been used to examine stabilization of the low density BCT polymorph by epitaxial strain. The relative energies of B4 and BCT polymorphs were calculated for ZnO, ZnS, and CdS, as a function of epitaxial strain, for a B4([0001])parallel to BCT[010]/B4([1 (2) over bar 10])parallel to BCT[001] correspondence. The phase stability is mapped in {u, v} parameter space and the challenge of identifying a suitable epitaxial support to direct growth of the BCT phase is discussed. For ZnS, ZnSe, ZnTe, CdS, and CdSe, the optimized BCT geometry is orthorhombically distorted, in contrast to the tetragonal lattices of ZnO, CdO, and InN. This orthorhombic distortion is associated with a rotation of the four-membered rings in the BCT structure, and is enhanced in ZnO, ZnS, and CdS under epitaxial strain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据