4.6 Article

Computation of correlation-induced atomic displacements and structural transformations in paramagnetic KCuF3 and LaMnO3

期刊

PHYSICAL REVIEW B
卷 81, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.075109

关键词

-

资金

  1. Russian Foundation for Basic Research [RFFI-07-02-00041]
  2. President of the Russian Federation [1941.2008.2, MK-360.2009.2]
  3. Federal Agency for Science and Innovations [02.740.11.0217]
  4. Dynasty Foundation
  5. Deutsche Forschungsgemeinschaft [484]
  6. EU

向作者/读者索取更多资源

We present a computational scheme for ab initio total-energy calculations of materials with strongly interacting electrons using a plane-wave basis set. It combines ab initio band structure and dynamical mean-field theory and is implemented in terms of plane-wave pseudopotentials. The present approach allows us to investigate complex materials with strongly interacting electrons and is able to treat atomic displacements, and hence structural transformations, caused by electronic correlations. Here it is employed to investigate two prototypical Jahn-Teller materials, KCuF3 and LaMnO3, in their paramagnetic phases. The computed equilibrium Jahn-Teller distortion and antiferro-orbital order agree well with experiment, and the structural optimization performed for paramagnetic KCuF3 yields the correct lattice constant, equilibrium Jahn-Teller distortion and tetragonal compression of the unit cell. Most importantly, the present approach is able to determine correlation-induced structural transformations, equilibrium atomic positions, and lattice structure in both strongly and weakly correlated solids in their paramagnetic phases as well as in phases with long-range magnetic order.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据