4.6 Article

Role of van der Waals bonding in the layered oxide V2O5: First-principles density-functional calculations

期刊

PHYSICAL REVIEW B
卷 82, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.82.054116

关键词

-

资金

  1. Swedish Research Council (VR)

向作者/读者索取更多资源

Sparse matter is characterized by regions with low electron density and its understanding calls for methods to accurately calculate both the van der Waals (vdW) interactions and other bonding. Here we present a first-principles density-functional theory (DFT) study of a layered oxide (V2O5) bulk structure which shows charge voids in between the layers and we highlight the role of the vdW forces in building up material cohesion. The result of previous first-principles studies involving semilocal approximations to the exchange-correlation functional in DFT gave results in good agreement with experiments for the two in-plane lattice parameters of the unit cell but overestimated the parameter for the stacking direction. To recover the third parameter we include the nonlocal (dispersive) vdW interactions through the vdW-DF method [M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)] testing also various choices of exchange forms. We find that the transferable first-principles vdW-DF calculations stabilizes the bulk structure. The vdW-DF method gives results in fairly good agreement with experiments for all three lattice parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据