4.6 Article

Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes

期刊

PHYSICAL REVIEW B
卷 81, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.045413

关键词

-

向作者/读者索取更多资源

The thermal conductivities of empty and water-filled single-walled carbon nanotubes (CNTs) with diameters between 0.83 and 1.36 nm and lengths ranging from 200 to 1400 nm are predicted using molecular dynamics simulation. Using a direct application of the Fourier law, we explore the transition to fully diffusive phonon transport with increasing CNT length. For empty CNTs, we find that the CNT length required to obtain fully diffusive phonon transport decreases from 1090 nm for the 0.83-nm-diameter CNT to 510 nm for the 1.36-nm-diameter CNT. The magnitude of the fully diffusive thermal conductivity also decreases monotonically with increasing CNT diameter. We find that the fully diffusive thermal conductivity of water-filled CNTs is 20%-35% lower than that of empty CNTs. By examining the empty and water-filled CNT density of states, we attribute the thermal conductivity reductions to an increase in low-frequency acoustic phonon scattering due to interactions with the water molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据