4.6 Article

Temperature-dependent electron and hole transport in disordered semiconducting polymers: Analysis of energetic disorder

期刊

PHYSICAL REVIEW B
卷 81, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.045210

关键词

-

资金

  1. European Commission [NMP-CT-2006-016434]
  2. Cambridge Display Technology Ltd

向作者/读者索取更多资源

We have used space-charge limited current measurements to study the mobility of holes and electrons in two fluorene-based copolymers for temperatures from 100 to 300 K. Interpreting the results using the standard analytical model produced an Arrhenius-type temperature dependence for a limited temperature range only and mobility was found to be apparently dependent on the thickness of the polymer film. To improve on this, we have interpreted our data using a numerical model that takes into account the effects of the carrier concentration and energetic disorder on transport. This accounted for the thickness dependence and gave a more consistent temperature dependence across the full range of temperatures, giving support to the extended Gaussian disorder model for transport in disordered polymers. Furthermore, we find that the same model adequately describes both electron and hole transport without the need to explicitly include a distribution of electron traps. Room-temperature mobilities were found to be in the region of 4 x 10(-8) and 2 x 10(-8) cm(2) V-1 s(-1) in the limit of zero field and zero carrier density with disorders of 110+/-10 and 100+/-10 meV for polymers poly{9,9-dioctylfluorene-co-bis[N,N'-(4-butylphenyl)]bis(N, N'-phenyl-1,4-phenylene)diamine} and poly(9,9-dioctylfluorene-co-benzothiadiazole), respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据