4.6 Article

Uncovering the dominant scatterer in graphene sheets on SiO2

期刊

PHYSICAL REVIEW B
卷 82, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.82.081417

关键词

-

资金

  1. National Science Foundation [0955625]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [0955625] Funding Source: National Science Foundation

向作者/读者索取更多资源

We have measured the impact of atomic hydrogen adsorption on the electronic transport properties of graphene sheets as a function of hydrogen coverage and initial, pre-hydrogenation field-effect mobility. Our results are compatible with hydrogen adsorbates inducing intervalley mixing by exerting a short-range scattering potential. The saturation coverages for different devices are found to be proportional to their initial mobility, indicating that the number of native scatterers is proportional to the saturation coverage of hydrogen. By extrapolating this proportionality, we show that the field-effect mobility can reach 1.5 x 10(4) cm(2)/V s in the absence of the hydrogen-adsorbing sites. This affinity to hydrogen is the signature of the most dominant type of native scatterers in graphene-based field-effect transistors on SiO2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据