4.6 Article

Diffusion of oxygen in uranium dioxide: A first-principles investigation

期刊

PHYSICAL REVIEW B
卷 81, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.014110

关键词

-

资金

  1. EDF (Electricite de France)

向作者/读者索取更多资源

Results of ab initio density-functional theory calculations of the migration energies of oxygen vacancies and interstitials in stoichiometric UO2 are reported. The diffusion of oxygen vacancies in UO2 is found to be highly anisotropic, and the [1 0 0] direction is energetically favored. The atomic relaxations play an important role in reducing the migration barriers. Within the generalized gradient approximation (GGA), we find that the migration energies of the preferred vacancies and interstitials paths are, respectively, 1.18 and 1.09 eV. With the inclusion of the Hubbard U parameter to account for the 5f electron correlations in GGA+U, the vacancy migration energy is lowered to 1.01 eV while the interstitial migration energy increases slightly to 1.13 eV. We find, however, that the correlation effects have a drastic influence on the mechanism of interstitial migration through the stabilization of Willis-type clusters. Indeed, in contrast to GGA, in GGA+U there is an inversion of the migration path with the so-called saddle-point position being lower in energy than the usual starting position. Thus while the migration barriers are nearly the same in GGA and GGA+U, the mechanisms are completely different. Our results clearly indicate that both vacancies and interstitials contribute almost equally to the diffusion of oxygen in UO2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据