4.6 Article

Electronic structure and lattice dynamics in kesterite-type Cu2ZnSnSe4 from first-principles calculations

期刊

PHYSICAL REVIEW B
卷 82, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.82.205204

关键词

-

向作者/读者索取更多资源

Electronic band structure, densities of states, and the details of chemical bonding in Cu2ZnSnSe4, a compound used in photovoltaic applications and structurally close to chalcopyrite, has been studied using the SIESTA method within the local-density approximation of the density-functional theory. Calculated zone-center phonons for Cu2ZnSnSe4 in kesterite and stannite phases reveal a similarity to those in structurally close CuInSe2, with some additional modes which must become observable due to the reduced crystal symmetry. The prediction that the highest TO vibration mode has predominantly Zn contribution is consistent with a strong Zn concentration dependence of this particular mode earlier observed in (Zn, Cd)-mixed kesterite systems. A detailed comparison of calculated vibration spectra for kesterite and stannite phases helps to identify the features which could be useful for distinguishing these two structures in practice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据