4.6 Article

Spin polarization and giant magnetoresistance effect induced by magnetization in zigzag graphene nanoribbons

期刊

PHYSICAL REVIEW B
卷 81, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.165404

关键词

-

资金

  1. NSF-China [10647126, 10974236]
  2. 973 Program [2009CB929103]
  3. Natural Science Foundation of Hebei Province of China [A2010000339]
  4. U.S.-DOE [DE-FG-02-04ER46124]
  5. Oklahoma C-Spin center

向作者/读者索取更多资源

We investigate spin-dependent electron transport through a zigzag graphene nanoribbon sample with two ferromagnetic strips deposit on two sides of the graphene ribbon. Our results show that, for the antiparallel configurations of ferromagnetic strips, the conductance exhibits zero conductance plateau when the Fermi energy locates around the Dirac point and the sample shows the properties of a semiconductor. But for the parallel configurations, the energy band spectrum is metallic and the conductance is always equal to or larger than e(2)/h. Thus the huge giant magnetoresistance effect can be achieved by altering the configurations of the ferromagnetic strips. Moreover, we study the spin-dependent conductance for the parallel configuration. It is found that the device shows half-metal behavior, in which it acts as a conductor to carriers of one spin orientation but as an insulator to those of the opposite spin orientation. So the present device can be applied as a spin filter. In addition, we study the consequence of the short-range Anderson disorder and find that the spin filtering effect and magnetoresistance effect still remain even in the strong disorder limit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据