4.6 Article

Photoinduced fluidity in chalcogenide glasses at low and high intensities: A model accounting for photon efficiency

期刊

PHYSICAL REVIEW B
卷 82, 期 13, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.82.134114

关键词

-

资金

  1. French Ministry of Research [25094-2007]
  2. NSF-DMR [0806333]
  3. NSF-ECCS [0901069]
  4. Division Of Materials Research
  5. Direct For Mathematical & Physical Scien [0806333] Funding Source: National Science Foundation
  6. Div Of Electrical, Commun & Cyber Sys
  7. Directorate For Engineering [0901069] Funding Source: National Science Foundation

向作者/读者索取更多资源

Detailed measurements of photoinduced fluidity in Ge-Se glasses were performed using a novel shear relaxation test in torsion mode. It is shown that photofluidity is significant even at a very low intensity and that there is no apparent threshold for activating the photostructural processes. Instead, the mechanism of photofluidity is described as a cumulative process involving photoinduced motions of every atom within the irradiated volume. Based on this assumption, a model is proposed, which is shown to accurately predict the power and wavelength dependence of photofluidity using a single fitting parameter n. The factor n represents the photon efficiency for inducing an atomic motion. Photofluidity experiments performed on glass fibers of various mean coordination number indicate that the process is rapidly reduced in overconstrained glasses. The values of n obtained for these glasses correlate remarkably well with the mean coordination dependence of other photostructural changes (photodarkening, photoexpansion). This indicates that the model is physically sound. Moreover, the model is shown to quantitatively describe photofluidity data from other glass systems from literature, therefore suggesting that it could be universally applied to all chalcogenide glasses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据