4.6 Article

Electron interactions in bilayer graphene: Marginal Fermi liquid and zero-bias anomaly

期刊

PHYSICAL REVIEW B
卷 82, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.82.115431

关键词

-

资金

  1. Office of Naval Research [N00014-09-1-0724]

向作者/读者索取更多资源

We analyze the many-body properties of bilayer graphene (BLG) at charge neutrality, governed by long-range interactions between electrons. Perturbation theory in a large number of flavors is used in which the interactions are described within a random phase approximation, taking account of dynamical screening effect. Crucially, the dynamically screened interaction retains some long-range character, resulting in log(2) renormalization of key quantities. We carry out the perturbative renormalization group calculations to one loop order and find that BLG behaves to leading order as a marginal Fermi liquid. Interactions produce a log squared renormalization of the quasiparticle residue and the interaction vertex function while all other quantities renormalize only logarithmically. We solve the RG flow equations for the Green's function with logarithmic accuracy and find that the quasiparticle residue flows to zero under RG. At the same time, the gauge-invariant quantities, such as the compressibility, remain finite to log(2) order, with subleading logarithmic corrections. The key experimental signature of this marginal Fermi liquid behavior is a strong suppression of the tunneling density of states, which manifests itself as a zero bias anomaly in tunneling experiments in a regime where the compressibility is essentially unchanged from the noninteracting value.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据