4.6 Article

Graphene nanoengineering and the inverse Stone-Thrower-Wales defect

期刊

PHYSICAL REVIEW B
卷 81, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.155444

关键词

-

资金

  1. NSF [DMR-0820518, CNS-0722415, PHY-0547845, CBET-0731319, DMR-0213918]
  2. AFOSR [FA9550-08-1-0007]
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [0820518] Funding Source: National Science Foundation

向作者/读者索取更多资源

We analyze a fundamental building block for monolithic nanoengineering on graphene: the Inverse-Stone-Thrower-Wales (ISTW) defect. The ISTW is formed from a pair of joined pentagonal carbon rings placed between a pair of heptagonal rings; the well-known Stone-Thrower-Wales defect is the same arrangement, but with the heptagonal rather than pentagonal rings joined. When removed and passivated with hydrogen, the structure constitutes a molecule, diazulene, which may be viewed as the result of an ad-dimer defect on anthracene. Embedding diazulene in the honeycomb lattice, we study the effect of ad-dimers on planar graphene. Because the ISTW defect has yet to be experimentally identified, we examine several synthesis routes and find one for which the barrier is only slightly higher than that associated with adatom hopping on graphene. ISTW and STW defects may be viewed as fundamental building blocks for monolithic structures on graphene. We show how to construct extended defect domains on the surface of graphene in the form of blisters, bubbles, and ridges on a length scale as small as 2 angstrom x 7 angstrom. Our primary tool in these studies is density functional theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据