4.6 Article

Distribution of the local density of states as a criterion for Anderson localization: Numerically exact results for various lattices in two and three dimensions

期刊

PHYSICAL REVIEW B
卷 81, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.155106

关键词

-

向作者/读者索取更多资源

Numerical approaches to Anderson localization face the problem of having to treat large localization lengths while being restricted to finite system sizes. We show that by finite-size scaling of the probability distribution of the local density of states (LDOS) this long-standing problem can be overcome. To this end we reexamine this method, propose numerical refinements, and apply it to study the dependence of the distribution of the LDOS on the dimensionality and coordination number of the lattice. Particular attention is given to the graphene lattice. We show that the system-size dependence of the LDOS distribution is indeed an unambiguous sign of Anderson localization, irrespective of the dimension and lattice structure. The numerically exact LDOS data obtained by us agree with a log-normal distribution over up to ten orders of magnitude and thereby fulfill a nontrivial symmetry relation previously derived for the nonlinear sigma model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据