4.6 Article

Effects of strain on the electronic structure of VO2

期刊

PHYSICAL REVIEW B
卷 81, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.115117

关键词

-

资金

  1. DARPA [W911NF-08-1-0203]
  2. NSF-DMR [0806937, 0746395]
  3. OTKA [F68726]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Materials Research [0806937] Funding Source: National Science Foundation
  6. Division Of Materials Research
  7. Direct For Mathematical & Physical Scien [0746395] Funding Source: National Science Foundation

向作者/读者索取更多资源

We present cluster-dynamic mean field theory (DMFT) (continuous time quantum Monte Carlo method) calculations based on a downfolded tight-binding model in order to study the electronic structure of vanadium dioxide (VO2) both in the low-temperature (M-1) and high-temperature (rutile) phases. Motivated by the recent efforts directed toward tuning the physical properties of VO2 by depositing films on different supporting surfaces of different orientations, we performed calculations for different geometries for both phases. In order to investigate the effects of the different growing geometries we applied both contraction and expansion for the lattice parameter along the rutile c axis in the three-dimensional translationally invariant systems miming the real situation. Our main focus is to identify the mechanisms governing the formation of the gap characterizing the M-1 phase and its dependence on strain. We found that the increase of the bandwidth with compression along the axis corresponding to the rutile c axis is more important than the Peierls bonding-antibonding splitting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据