4.6 Article

Molecular self-organization: Predicting the pattern diversity and lowest energy state of competing ordering motifs

期刊

PHYSICAL REVIEW B
卷 82, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.82.165451

关键词

-

资金

  1. German Excellence Initiative
  2. Swiss Nanoscience Institute

向作者/读者索取更多资源

Self-organized monolayers of highly flexible Frechet dendrons were deposited on graphite surfaces by solution casting. Scanning tunneling microscopy (STM) reveals an unprecedented variety of patterns with up to seven stable hierarchical ordering motifs allowing us to use these molecules as a versatile model system. The essential molecular properties determined by molecular mechanics simulations are condensed to a coarse grained interaction-site model of various chain configurations. In a Monte Carlo approach with random starting configurations, the experimental pattern diversity can be reproduced in all facets of the local and global ordering. Based on an energy analysis of the Monte Carlo and molecular mechanics modeling, the thermodynamically most stable pattern is predicted and shown to coincide with the pattern which dominates the STM images after several hours or upon moderate heating.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据