4.6 Article

Spectral gap induced by structural corrugation in armchair graphene nanoribbons

期刊

PHYSICAL REVIEW B
卷 81, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.115421

关键词

-

向作者/读者索取更多资源

We study the effects of the structural corrugation or rippling on the electronic properties of undoped armchair graphene nanoribbons (AGNRs). First, reanalyzing the single corrugated graphene layer we find that the two inequivalent Dirac points (DPs) move away from each other. Futhermore, the Fermi velocity v(F) decreases when the rippling increases. Regarding the AGNRs, whose metallic behavior depends on their widths, we analyze, in particular, the case of the zero-gap band-structure AGNRs. By solving the Dirac equation with adequate boundary conditions we show that, due to the shifting of the DP, a gap opens up in the spectra. This gap scales with the square of the rate between the height and the wavelength of the deformation. We confirm this prediction by an exact numerical solution of the finite width rippled AGNR. Moreover, we find that the quantum conductance, calculated by the nonequilibrium Green's function technique, vanishes when the gap opens up. The main conclusion of our results is that a conductance gap should appear for all undoped corrugated AGNR, independently of their widths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据