4.6 Article

Role of contacts in graphene transistors: A scanning photocurrent study

期刊

PHYSICAL REVIEW B
卷 79, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.245430

关键词

electronic structure; graphene; multilayers; nanotube devices; optical microscopy; photoconductivity

资金

  1. Austrian Science Fund (FWF)

向作者/读者索取更多资源

A near-field scanning optical microscope is used to locally induce photocurrent in a graphene transistor with high spatial resolution. By analyzing the spatially resolved photoresponse, we find that in the n-type conduction regime a p-n-p structure forms along the graphene device due to the doping of the graphene by the metal contacts. The modification of the electronic structure is not limited only underneath the metal electrodes but extends 0.2-0.3 mu m into the graphene channel. The asymmetric conduction behavior of electrons and holes that is commonly observed in graphene transistors is discussed in light of the potential profiles obtained from this photocurrent-imaging approach. Furthermore, we show that photocurrent imaging can be used to probe single-layer/multilayer graphene interfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据