4.6 Article

Separability and ground-state factorization in quantum spin systems

期刊

PHYSICAL REVIEW B
卷 79, 期 22, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.224434

关键词

ground states; information theory; long-range order; magnetic anisotropy; magnetisation; quantum entanglement; short-range order; spin Hamiltonians; spin systems

向作者/读者索取更多资源

We investigate the existence and the properties of fully separable (fully factorized) ground states in quantum spin systems. Exploiting techniques of quantum information and entanglement theory, we extend a recently introduced method and construct a general, self-contained theory of ground state factorization in frustration-free quantum spin models defined on lattices in any spatial dimension and for interactions of arbitrary range. We show that, quite generally, nonexactly solvable translationally invariant models in presence of an external uniform magnetic field can admit exact, fully factorized ground state solutions. Unentangled ground states occur at finite values of the Hamiltonian parameters satisfying well-defined balancing conditions between the applied field and the interaction strengths. These conditions are analytically determined together with the type of magnetic orderings compatible with factorization and the corresponding values of the fundamental observables such as energy and magnetization. The method is applied to a series of examples of increasing complexity, including translationally invariant models with short, long, and infinite ranges of interaction, as well as systems with spatial anisotropies, in lower and higher dimensions. We also illustrate how the general method, besides yielding a large series of exact results for complex models in any dimension, recovers, as particular cases, the results previously achieved on simple models in low dimensions exploiting direct methods based on factorized mean-field ansatz.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据