4.6 Article

Gradient elasticity and flexural wave dispersion in carbon nanotubes

期刊

PHYSICAL REVIEW B
卷 80, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.195412

关键词

carbon nanotubes; disperse systems; elastic waves; elasticity; molecular dynamics method

向作者/读者索取更多资源

Higher-order elasticity theories have recently been used to predict the dispersion characteristics of flexural waves in carbon nanotubes (CNTs). In particular, nonlocal elasticity and gradient elasticity (with unstable strain gradients) have been employed within the framework of classical Euler-Bernoulli or improved Timoshenko beam theory to capture the dynamical behavior of CNTs. Qualitative agreement with the predictions of related molecular-dynamics (MD) simulations was observed, whereas the MD results departed significantly from those obtained with classical elasticity calculations. The present contribution aims to alert that the aforementioned higher-order models may yield questionable results for the higher wave numbers. As an alternative, gradient elasticity (with stable strain gradients), by also incorporating inertia gradients for dynamical applications, is used in combination with both Euler-Bernoulli and Timoshenko beam theories and shown to describe flexural wave dispersion in CNTs realistically for the small-to-medium range of wave numbers, i.e., the range for which MD results are available.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据