4.6 Article

Electronic, structural, and transport properties of Ni-doped graphene nanoribbons

期刊

PHYSICAL REVIEW B
卷 79, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.075435

关键词

ab initio calculations; adsorbed layers; Fermi level; graphene; magnetic moments; magnetisation; nanostructured materials; nickel; spin polarised transport

资金

  1. CNPq
  2. FAPESP
  3. FAPEMIG
  4. CAPES

向作者/读者索取更多资源

We have investigated the electronic and transport properties of zigzag Ni-adsorbed graphene nanoribbons (Ni/GNRs) using ab initio calculations. We find that the Ni adatoms lying along the edge of zigzag GNRs represent the energetically most stable configuration, with an energy difference of approximately 0.3 eV when compared to the adsorption in the middle of the ribbon. The carbon atoms at the ribbon edges still present nonzero magnetic moments as in the pristine GNR even though there is a quenching by a factor of almost five in the value of the local magnetic moments at the C atoms bonded to the Ni. This quenching decays relatively fast and at approximately 9 A from the Ni adsorption site the magnetic moments have already values close to the pristine ribbon. At the opposite edge and at the central carbon atoms the changes in the magnetic moments are negligible. The energetic preference for the antiparallel alignment between the magnetization at the opposite edges of the ribbon is still maintained upon Ni adsorption. We find many Ni d-related states within an energy window of 1 eV above and below the Fermi energy, which gives rise to a spin-dependent charge transport. These results suggest the possibility of manufacturing spin devices based on GNRs doped with Ni atoms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据