4.6 Article

Vacuum space-charge effects in solid-state photoemission

期刊

PHYSICAL REVIEW B
卷 79, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.035402

关键词

high-speed optical techniques; light sources; numerical analysis; optical pulse generation; photoelectron spectra; space charge; synchrotron radiation

资金

  1. Deutsche Forschungsgemeinschaft
  2. Bundesministerium fur Bildung und Forschung

向作者/读者索取更多资源

Solid-state photoemission spectroscopy relies to a large part on pulsed photon sources: third-generation synchrotron-radiation sources and ultrafast laser systems in particular. Especially when the photon pulses are intense, Coulombic repulsion between the emitted electrons will be a limiting factor for photoemission experiments aiming at highest energy and angle resolutions. In the present work, the propagation of the photoelectron cloud to the detector is studied with a full N-body numerical simulation. The influence of various parameters, in particular number of electrons per pulse, source size, pulse duration, kinetic-energy and emission-angle distributions as well as presence of mirror charges in the sample, is investigated in detail. Previous experimental results obtained with various picosecond and femtosecond light sources are successfully reproduced and the general resolution limits of solid-state photoemission using pulsed photon sources are explored. The results are potentially important for the design and interpretation of photoemission experiments with next-generation light sources, such as free-electron lasers and high-harmonic generation sources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据