4.6 Article

Dephasing-enabled triplet Andreev conductance

期刊

PHYSICAL REVIEW B
卷 79, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.245315

关键词

chaos; electric admittance; proximity effect (superconductivity); quantum dots; spin-orbit interactions; superconducting materials

向作者/读者索取更多资源

We study the conductance of normal-superconducting quantum dots with strong spin-orbit scattering coupled to a source reservoir using a single-mode spin-filtering quantum-point contact. The choice of the system is guided by the aim to study triplet Andreev reflection without relying on half-metallic materials with specific interface properties. Focusing on the zero-temperature, zero-bias regime, we show how dephasing due to the presence of a voltage probe enables the conductance, which vanishes in the quantum limit, to take nonzero values. Concentrating on chaotic quantum dots, we obtain the full distribution of the conductance as a function of the dephasing rate. As dephasing gradually lifts the conductance from zero, the dependence of the conductance fluctuations on the dephasing rate is nonmonotonic. This is in contrast to chaotic quantum dots in usual transport situations, where dephasing monotonically suppresses the conductance fluctuations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据