4.6 Article

Experimentally constrained density-functional calculations of the amorphous structure of the prototypical phase-change material Ge2Sb2Te5

期刊

PHYSICAL REVIEW B
卷 80, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.020201

关键词

amorphous state; antimony alloys; crystallisation; density functional theory; electronic density of states; germanium alloys; metallic thin films; phase change materials; random-access storage; tellurium alloys; X-ray diffraction; X-ray photoelectron spectra

资金

  1. Japan Science and Technology Agency
  2. FZ Julich and the John von Neumann Institute for Computing

向作者/读者索取更多资源

Phase change materials involve the rapid and reversible transition between nanoscale amorphous (a-) and crystalline (c-) spots in a polycrystalline film and play major roles in the multimedia world, including nonvolatile computer memory. The materials of choice are alloys of Ge, Sb, and Te, e.g., Ge2Sb2Te5 (GST) in digital versatile disk-random access memory. There has been much speculation about the structure of a- GST, but no model has yet received general acceptance. Here we optimize the structure by combining the results of density-functional calculations with high-energy x-ray diffraction data and x-ray photoelectron spectroscopy (XPS) measurements of the electronic densities of states to determine the structure. The structure agrees very well with available experimental data, including the differences in the XPS data between the amorphous and crystalline structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据