4.6 Article

Electronic structure and electron-phonon coupling of doped graphene layers in KC8

期刊

PHYSICAL REVIEW B
卷 79, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.205106

关键词

density functional theory; electron-phonon interactions; graphene; graphite intercalation compounds; monolayers; photoelectron spectra; potassium compounds; superconductivity

向作者/读者索取更多资源

We propose graphite intercalation compounds (GICs) as a material system with precisely the same electronic properties as doped few layer graphene. Despite the fact that GICs have been around for the last four decades, this fact has gone unnoticed so far. Especially, we focus on the electronic energy bands of KC8 which correspond to a doped graphene monolayer. We provide extensive theoretical and experimental evidence for this claim employing a combined angle-resolved photoemission and theory approach using tight-binding, standard density-functional theory and including electron-electron correlation on a GW level. We observe a strong momentum-dependent kink in the quasiparticle dispersion at 166 meV highlighting electron-phonon coupling to an in-plane transversal optical phonon. These results are key for understanding both the unique electronic properties of doped graphene layers and superconductivity in KC8.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据