4.6 Article

Analytic model of elastic metamaterials with local resonances

期刊

PHYSICAL REVIEW B
卷 79, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.195109

关键词

deformation; effective mass; metamaterials; shear modulus

资金

  1. National Natural Science Foundation of China [90605001, 10702006, 10832002]
  2. National Basic Research Program of China [2006CB601204]
  3. Beijing Municipal Commission of Education Project [20080739027]

向作者/读者索取更多资源

A unified analytic model for effective mass density, effective bulk modulus, and effective shear modulus is presented for elastic metamaterials composed of coated spheres embedded in a host matrix. The effective material properties are derived directly from the averages of local momentum, stress, and strain defined in a single doubly coated sphere. It is shown that the effective material parameters predicted by the proposed model are in excellent agreements with the coherent-potential approximation results at low filling fractions where the anisotropy of periodic structures can be neglected for elastic waves. The advantage of the proposed method is that it can reveal clearly the physical mechanism for negative effective material parameters induced by the resonant effect. It is found that negative effective mass density is induced by negative total momentum of the composite for a positive momentum excitation. Negative effective bulk modulus appears for composites with an increasing (decreasing) total volume under a compressive (tensile) stress. Negative effective shear modulus describes composites with axisymmetric deformation under an opposite axisymmetric loading. Numerical examples are also given to illustrate these mechanisms. These findings may be useful in design of elastic metamaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据