4.6 Article

A hybrid density functional study of lithium in ZnO: Stability, ionization levels, and diffusion

期刊

PHYSICAL REVIEW B
卷 80, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.195205

关键词

defect states; density functional theory; diffusion; dissociation; doping profiles; energy gap; II-VI semiconductors; interstitials; lithium; polarons; semiconductor doping; stoichiometry; valence bands; wide band gap semiconductors; zinc compounds

资金

  1. Swiss National Science Foundation

向作者/读者索取更多资源

The properties of interstitial and substitutional Li in wurtzite ZnO are modeled using hybrid density functional calculations. We investigate the impact of the band-gap error on the formation energies of the two defects and their dependence on the Fermi level. It is found that within a local-density approximation, the acceptor level of Li-Zn is very close to the valence-band top but as the band gap is opened, the acceptor state becomes more localized and the respective level is shifted upward. Taking polaronic effects into account, we place the ionization level of Li-Zn between E-v+0.60 eV and E-v+1.1 eV. This deeper level explains the difficulty in realizing p-type ZnO using Li as monodopant. Further, the mobility of the defects was investigated. While interstitial Li is mobile at low temperatures, independent of the stoichiometry, the diffusion of Li-Zn depends on the concentrations of intrinsic defects. Our calculations show that in O-rich material, where the defect is more stable, the dominant diffusion process corresponds to a dissociative mechanism requiring a substantial activation energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据