4.6 Article

Formation energies of rutile metal dioxides using density functional theory

期刊

PHYSICAL REVIEW B
卷 79, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.045120

关键词

chromium compounds; density functional theory; electrochemistry; germanium compounds; iridium compounds; lead compounds; localised states; manganese compounds; molybdenum compounds; niobium compounds; osmium compounds; platinum compounds; rhenium compounds; ruthenium compounds; selenium compounds; titanium compounds; tungsten compounds; vanadium compounds

资金

  1. Danish Center for Scientific Computing [HDW-1103-06]
  2. STREP EU APOLLON-B [NMP3-CT-2006033228]

向作者/读者索取更多资源

We apply standard density functional theory at the generalized gradient approximation (GGA) level to study the stability of rutile metal oxides. It is well known that standard GGA exchange and correlation in some cases is not sufficient to address reduction and oxidation reactions. Especially the formation energy of the oxygen molecule and the electron self-interaction for localized d and f electrons are known shortcomings. In this paper we show that despite the known problems, it is possible to calculate the stability of a wide range of rutile oxides MO2, with M being Pt, Ru, Ir, Os, Pb, Re, Mn, Se, Ge, Ti, Cr, Nb, W, Mo, and V, using the electrochemical series as reference. The mean absolute error of the formation energy is 0.29 eV using the revised Perdew-Burke-Ernzerhof (PBE) GGA functional. We believe that the reason for the success is due to the reference level being H-2 and H2O and not O-2 and due to a more accurate description of exchange for this particular GGA functional compared to PBE. Furthermore, we would expect the self-interaction problem to be largest for the most localized d orbitals; that means the late 3d metals and since Co, Fe, Ni, and Cu do not form rutile oxides they are not included in this study. We show that the variations in formation energy can be understood in terms of a previously suggested model separating the formation energy into a metal deformation contribution and an oxygen binding contribution. The latter is found to scale with the filling of the d band.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据