4.6 Article

Finding the low-energy structures of Si[001] symmetric tilted grain boundaries with a genetic algorithm

期刊

PHYSICAL REVIEW B
卷 80, 期 17, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.174102

关键词

crystal symmetry; dislocations; elemental semiconductors; silicon; surface structure; tight-binding calculations; tilt boundaries

资金

  1. U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]
  2. National Energy Research Supercomputing Center (NERSC) in Berkeley

向作者/读者索取更多资源

We developed a global structure optimization method, genetic algorithm, for a fast and efficient prediction of grain-boundary structures. Using this method we predicted the most stable structures and a number of low-energy metastable structures for Si[001] symmetric tilted grain boundaries with various tilted angles. We show that most of the grain-boundary structures can be described by the structural unit model with the units being the dislocation cores and perfect-crystal fragments. The energies of the grain-boundary structures obtained from the genetic algorithm optimization are evaluated by tight-binding calculations using the environment-dependent Si tight-binding potential developed previously and found to be in very good agreement with the first-principles calculation results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据