4.6 Article

Weak localization properties of the doped Z2 topological insulator

期刊

PHYSICAL REVIEW B
卷 80, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.085119

关键词

graphene; spin-orbit interactions; weak localisation

资金

  1. KAKENHI [19740189, 20740167]
  2. Grants-in-Aid for Scientific Research [19740189] Funding Source: KAKEN

向作者/读者索取更多资源

Localization properties of the doped Z(2) topological insulator are studied by weak localization theory. The disordered Kane-Mele model for graphene is taken as a prototype and analyzed with attention to effects of the topological mass term, intervalley scattering, and the Rashba spin-orbit interaction. The known tendency of graphene to antilocalize in the absence of intervalley scattering between K and K-' points is naturally placed as the massless limit of the Kane-Mele model. The latter is shown to have a unitary behavior even in the absence of magnetic field due to the topological mass term. When intervalley scattering is introduced, the topological mass term leaves the system in the unitary class, whereas the ordinary mass term, which appears if A and B sublattices are inequivalent, turns the system to weak localization. The Rashba spin-orbit interaction in the presence of K-K-' scattering drives the system to weak antilocalization in sharp contrast to the ideal graphene case.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据