4.6 Article

Mesoscopic model of a system possessing both relaxor ferroelectric and relaxor ferromagnetic properties

期刊

PHYSICAL REVIEW B
卷 79, 期 21, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.214114

关键词

critical points; density functional theory; electric fields; electrostriction; ferromagnetic materials; free energy; magnetic transitions; magnetostriction; multiferroics; optical susceptibility; percolation; relaxor ferroelectrics

向作者/读者索取更多资源

A pseudospin model of a multiferroic system which exhibits both relaxor ferroelectric and relaxor ferromagnetic behavior is presented. The electric and magnetic degrees of freedom associated with the simultaneous presence of polar nanoregions and magnetic nanoregions are described by two sets of pseudospin variables, which satisfy separate spherical conditions. The spin-glass-like random interactions within each subset are assumed to be infinitely ranged. In addition, the polar nanoregions are subject to random electric fields. By introducing strain modulation of the corresponding random interaction parameters, a fourth-order interaction between polar and magnetic degrees of freedom is derived whose strength can be estimated from the phenomenological electrostriction and magnetostriction coefficients. Dynamic dielectric susceptibility in the presence of a static magnetic field H is calculated from the Langevin equations of motion. The value of the critical magnetic field at which long-range ferroelectric order appears is determined. By considering the corresponding free-energy density functional, the local electric field inside the polar nanoregions is derived and it is shown that the mechanism of growth and percolation of polar nanoregions is also affected by the magnetic field. Thus the Vogel-Fulcher relaxation time is predicted to diverge on a line of percolation critical points in the H,T plane, in agreement with recent experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据