4.6 Article

Two-dimensional electronic and vibrational band structure of uniaxially strained graphene from ab initio calculations

期刊

PHYSICAL REVIEW B
卷 80, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.205410

关键词

-

资金

  1. Cluster of Excellence Unifying Concepts in Catalysis
  2. DFG

向作者/读者索取更多资源

We present an in-depth analysis of the electronic and vibrational band structure of uniaxially strained graphene by ab initio calculations. Depending on the direction and amount of strain, the Fermi crossing moves away from the K point. However, graphene remains semimetallic under small strains. The deformation of the Dirac cone near the K point gives rise to a broadening of the 2D Raman mode. In spite of specific changes in the electronic and vibrational band structure the strain-induced frequency shifts of the Raman active E-2g and 2D modes are independent of the direction of strain. Thus, the amount of strain can be directly determined from a single Raman measurement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据