4.6 Article

Phonon confinement effects in ultrathin epitaxial bismuth films on silicon studied by time-resolved electron diffraction

期刊

PHYSICAL REVIEW B
卷 80, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.024307

关键词

bismuth; electron diffraction; elemental semiconductors; epitaxial growth; heat conduction; high-speed optical techniques; metallic epitaxial layers; phonons; silicon

资金

  1. Deutsche Forschungsgemeinschaft [SFB 616]

向作者/读者索取更多资源

The transient temperature evolution of ultrathin bismuth films, epitaxially grown on a silicon single crystal, upon femtosecond laser excitation is studied by time-resolved electron diffraction. The exponential decay of the film temperature is explained by phonon reflection at the interface, which results in a strongly reduced thermal conduction in the cross plane of the layered system. The thermal boundary conductance is found to be as low as 1273 W/(K cm(2)). Model calculations, including phonon confinement effects, explain the linear relationship between the observed film-temperature decay constant and the film thickness. Even for 2.5 nm thin films the phonon transmission probability across the interface is given by bulk properties. Our simulations show that phonon confinement effects are negligible for bismuth-film thicknesses larger than 1 nm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据