4.6 Article

High-resolution investigation of metal nanoparticle growth on an insulating surface

期刊

PHYSICAL REVIEW B
卷 80, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.045430

关键词

-

资金

  1. NSERC
  2. CIfAR
  3. FQRNT
  4. CFI

向作者/读者索取更多资源

The three-dimensional nanoparticle morphology and the nanoparticle-substrate relationship during the sub-monolayer growth of three metals (gold, tantalum, and palladium) on the alkali halide KBr (001) surface is investigated by combining in situ high-resolution noncontact atomic force microscopy and ex situ transmission electron microscopy approaches. Highly varied growth behavior between the metals is revealed. Gold produces nearly spherical multiply twinned nanoparticles at room temperature and an increasing number of epitaxial particles at elevated temperatures. In contrast, the tantalum grows as relatively flat fractal particles, despite the square symmetry of the substrate lattice, a condition which normally precludes fractal growth. The tantalum also exhibits a strong affinity for KBr surface steps, leading to one-dimensional chains of nanoparticles. The deposition of palladium results in the creation of protruding substrate distortions and monolayer-high rectangular KBr islands in addition to the growth of palladium nanoparticles. It is hypothesized that the unusual growth observed in the palladium-KBr system is caused by the interdiffusion of palladium under the KBr surface. The range of growth behavior in the three systems is described in terms of the surface and interface energies, yielding bounds on the metal/KBr interface energies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据