4.6 Article

Breaking of phase symmetry in nonequilibrium Aharonov-Bohm oscillations through a quantum dot

期刊

PHYSICAL REVIEW B
卷 80, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.035416

关键词

-

资金

  1. ISF
  2. BSF

向作者/读者索取更多资源

Linear-response conductance of a two-terminal Aharonov-Bohm (AB) interferometer is an even function of magnetic field. This phase symmetry is not expected to hold beyond the linear-response regime and in simple AB rings the phase of the oscillations changes smoothly (almost linearly) with voltage bias. However, in an interferometer with a quantum dot in its arm, tuned to the Coulomb blockade regime, experiments indicate that phase symmetry seems to persist even in the nonlinear regime. In this paper we discuss the processes that break AB phase symmetry and show that breaking of phase symmetry in such an interferometer is possible only after the onset of inelastic cotunneling, i.e., when the voltage bias is larger than the excitation energy in the dot. The asymmetric component of AB oscillations is significant only when the contributions of different levels to the symmetric component nearly cancel out (e.g., due to different parity of these levels), which explains the sharp changes in the AB phase. We show that our theoretical results are consistent with experimental findings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据