4.6 Article

Influence of O2 and N2 on the conductivity of carbon nanotube networks

期刊

PHYSICAL REVIEW B
卷 79, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.195431

关键词

adsorption; carbon nanotubes; density functional theory; electric admittance; electrical conductivity; tunnelling

资金

  1. NABIIT and the Danish Center for Scientific Computing [HDW-1103-06]
  2. Lundbeck Foundation
  3. National Physical Laboratory (NPL)
  4. Engineering and Physical Sciences Research Council (EPSRC-GB)

向作者/读者索取更多资源

We have performed experiments on single-wall carbon nanotube (SWNT) networks and compared with density-functional theory (DFT) calculations to identify the microscopic origin of the observed sensitivity of the network conductivity to physisorbed O-2 and N-2. Previous DFT calculations of the transmission function for isolated pristine SWNTs have found physisorbed molecules have little influence on their conductivity. However, by calculating the four-terminal transmission function of crossed SWNT junctions, we show that physisorbed O-2 and N-2 do affect the junction's conductance. This may be understood as an increase in tunneling probability due to hopping via molecular orbitals. We find the effect is substantially larger for O-2 than for N-2, and for semiconducting rather than metallic SWNTs junctions, in agreement with experiment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据