4.6 Article

Interaction effects on microwave-assisted switching of Ni80Fe20 nanowires in densely packed arrays

期刊

PHYSICAL REVIEW B
卷 80, 期 17, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.174421

关键词

exchange interactions (electron); ferromagnetic materials; iron alloys; magnetic moments; magnetic switching; magnetisation; microwave spectra; nanowires; nickel alloys; radiation effects

向作者/读者索取更多资源

We perform broadband microwave absorption spectroscopy and explore the switching behavior of 300-nm-wide and 20-nm-thick Ni80Fe20 nanowires under irradiation of a magnetic rf field. In particular, we investigate two arrays where the nanowires exhibit a different edge-to-edge separation, a=100 and 700 nm. In the arrays we observe microwave-assisted switching (MAS). The MAS process with a resonant behavior near 6 GHz is attributed to the excitation of a confined Damon-Eshbach-type mode. Dipolar interactions between nanowires are found to decrease the optimum frequency for MAS and to increase the switching efficiency for the small separation a. The observed characteristics are substantiated by model considerations. We propose a modification of the previously introduced analytical demagnetization factors of an individual thin wire and incorporate the effect of dipolar interactions occurring in the array. The approach explains the dependence of the MAS-relevant eigenmode on the edge-to-edge separation a. MAS is also found to narrow the switching field distribution of the nanowire array.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据