4.6 Article

Network behavior in thin film growth dynamics

期刊

PHYSICAL REVIEW B
卷 79, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.195418

关键词

chemical vapour deposition; Monte Carlo methods; surface morphology; thin films

向作者/读者索取更多资源

We present a network modeling approach for various thin film growth techniques that incorporates re-emitted particles due to the nonunity sticking coefficients. We model re-emission of a particle from one surface site to another one as a network link and generate a network model corresponding to the thin film growth. Monte Carlo simulations are used to grow films and dynamically track the trajectories of re-emitted particles. We performed simulations for normal incidence, oblique angle, and chemical vapor deposition (CVD) techniques. Each deposition method leads to a different dynamic evolution of surface morphology due to different sticking coefficients involved and different strength of shadowing effect originating from the obliquely incident particles. Traditional dynamic-scaling analysis on surface morphology cannot point to any universal behavior. On the other hand, our detailed network analysis reveals that there exist universal behaviors in degree distributions, weighted average degree versus degree, and distance distributions independent of the sticking coefficient used and sometimes even independent of the growth technique. We also observe that network traffic during high-sticking coefficient CVD and oblique-angle deposition occurs mainly among edges of the columnar structures formed while it is more uniform and short range among hills and valleys of small sticking coefficient CVD and normal-angle depositions that produce smoother surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据