4.6 Article

Doping-driven evolution of the superconducting state from a doped Mott insulator: Cluster dynamical mean-field theory

期刊

PHYSICAL REVIEW B
卷 79, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.195113

关键词

electronic density of states; Fermi level; high-temperature superconductors; localised states; metal-insulator transition

向作者/读者索取更多资源

In this paper we investigate the zero-temperature doping-driven evolution of a superconductor toward the Mott insulator in a two-dimensional electron model, relevant for high-temperature superconductivity. To this purpose we use a cluster extension of dynamical mean-field theory. Our results show that a standard d-wave superconductor, realized at high doping, is driven into the Mott insulator via an intermediate superconducting state displaying unconventional physical properties. By restoring the translational invariance of the lattice, we give an interpretation of these findings in momentum space. In particular, we show that at a finite doping a strong momentum-space differentiation takes place: non-Fermi liquid and insulatinglike (pseudogap) characters rise in some regions (antinodes), while Fermi liquid quasiparticles survive in other regions (nodes) of momentum space. We describe the consequence of these happenings on the spectral properties, stressing in particular the behavior of the superconducting gap, which reveals two distinct nodal and antinodal energy scales as a function of doping, detected in photoemission and Raman spectroscopy experiments. We study and compare with experimental results the doping-dependent behavior of other physical quantities, such as for instance, the nodal quasiparticle velocity (extracted in angle-resolved photoemission) and the low-energy slopes of the local density of states and of the Raman scattering response. We then propose a description of the evolution of the electronic structure while approaching the Mott transition. We show that, within our formalism, a strong asymmetry naturally arises in the local density of states, measured in scanning tunneling spectroscopy. We investigate in detail the doping evolution of the electronic bands, focusing on the kinklike quasiparticle dispersion observed with angle-resolved photoemission in specific cuts of the momentum-energy space. We finally show the consequences of the properties presented above in the doping dependence of the Hall resistivity, measured in magnetotransport experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据