4.6 Article

Ferromagnetism in armchair graphene nanoribbons

期刊

PHYSICAL REVIEW B
卷 79, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.035405

关键词

carrier density; electrical conductivity; electron-electron interactions; ferromagnetic materials; ground states; magnetoelectronics; numerical analysis; spin-orbit interactions

资金

  1. National Science Council in Taiwan

向作者/读者索取更多资源

Due to the weak spin-orbit interaction and the peculiar relativistic dispersion in graphene, there are exciting proposals to build spin qubits in graphene nanoribbons with armchair boundaries. However, the mutual interactions between electrons are neglected in most studies so far and thus motivate us to investigate the role of electronic correlations in armchair graphene nanoribbon by both analytical and numerical methods. Here we show that the inclusion of mutual repulsions leads to drastic changes and the ground state turns ferromagnetic in a range of carrier concentrations. Our findings highlight the crucial importance of the electron-electron interaction and its subtle interplay with boundary topology in graphene nanoribbons. Furthermore, since the ferromagnetic properties sensitively depend on the carrier concentration, it can be manipulated at ease by electric gates. The resultant ferromagnetic state with metallic conductivity is not only surprising from an academic viewpoint, but also has potential applications in spintronics at nanoscale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据