4.6 Article

Experimental study of the frequency factor in the Polanyi-Wigner equation: The case of C2H6

期刊

VACUUM
卷 122, 期 -, 页码 154-160

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.vacuum.2015.09.021

关键词

Ice films; Sublimation energy; Experimental laboratory

资金

  1. Ministerio de Economia y Competitividad [FIS2013-48087-C2-2-P]

向作者/读者索取更多资源

The C2H6 molecule has been used to determine experimentally, for the first time, the frequency factor present in the Polanyi-Wigner equation and to study how temperature influences this magnitude for a zeroth order desorption. This parameter is necessary to calculate the desorption rates for environments in which this process occurs. The method presented is based on the analysis of a quartz crystal microbalance signal. In the literature the frequency factor is not experimentally obtained but is rather assumed to be K-6.T/h (at 50 K), as proposed by the activated state theory for first order desorption processes, or it is estimated by other methods. Additionally, the factor's variation with temperature has not been experimentally explored to date. Two different types of zeroth order desorption experiments have been designed for this study. The purpose of the first experiment, carried out at a constant rate of warming, is to obtain the desorption energy, which is compared with previous values reported in the literature. The second group of desorption experiments is performed at constant temperatures and is used to calculate and study the frequency factor. Several temperatures have been specifically selected, enabling us to determine the influence of the temperature on this parameter. We have calculated a relationship for the frequency factor and temperature, obtaining an increase of approximately 50% for the frequency factor for an increase of only 6 K. This result must be taken into account when the Polanyi-Wigner equation is used for desorption rate calculations. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据