4.6 Article

Hyperfine interaction and electron-spin decoherence in graphene and carbon nanotube quantum dots

期刊

PHYSICAL REVIEW B
卷 80, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.155401

关键词

-

资金

  1. Swiss NSF
  2. NCCR Nanoscience
  3. JST ICORP
  4. DARPA Quest
  5. QuantumWorks
  6. German DFG

向作者/读者索取更多资源

We analytically calculate the nuclear-spin interactions of a single electron confined to a carbon nanotube or graphene quantum dot. While the conduction- band states in graphene are p-type, the accordant states in a carbon nanotube are sp-hybridized due to curvature. This leads to an interesting interplay between isotropic and anisotropic hyperfine interactions. By using only analytical methods, we are able to show how the interaction strength depends on important physical parameters, such as curvature and isotope abundances. We show that for the investigated carbon structures, the C-13 hyperfine coupling strength is less than 1 mu eV, and that the associated electron-spin decoherence time can be expected to be several tens of microseconds or longer, depending on the abundance of spin-carrying C-13 nuclei. Furthermore, we find that the hyperfine-induced Knight shift is highly anisotropic, both in graphene and in nanotubes of arbitrary chirality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据