4.6 Article

Nonresonant Raman and inelastic x-ray scattering in the charge-density-wave phase of the spinless Falicov-Kimball model

期刊

PHYSICAL REVIEW B
卷 79, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.115130

关键词

charge density waves; electronic density of states; Raman spectra; sum rules; X-ray scattering

向作者/读者索取更多资源

The dynamical mean-field theory formalism to describe nonresonant inelastic light and x-ray scattering in a charge-density-wave phase is developed and applied to the spinless Falicov-Kimball model on an infinite-dimensional hypercubic lattice at half-filling. At zero temperature, the charge gap in the density of states is exactly equal to U; increasing the temperature rapidly fills the gap with subgap states. The nonresonant response function for Raman and inelastic x-ray scattering shows peaks connected with transitions over the gap and transitions that involve subgap states; in addition, the spectra have significant changes in shape as the temperature is raised from zero to T-c. In the case of x-ray scattering (when both energy and momentum are transferred), the response function illustrates features of dynamical screening (vertex corrections) in the different (nonresonant) symmetry channels (A(1g) and B-1g); dynamical screening is also present in the A(1g) Raman signal. Finally, we derive and verify the first-moment sum rules for the (nonresonant) Raman and inelastic x-ray response functions in the charge-density-wave phase and we discuss experimental implications for how the sum rules might be employed in data analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据