4.6 Article

Origin of superconductivity in boron-doped silicon carbide from first principles

期刊

PHYSICAL REVIEW B
卷 79, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.104511

关键词

ab initio calculations; boron; doping; electron-phonon interactions; silicon compounds; superconducting transition temperature; two-photon processes; type I superconductors

资金

  1. NSF [DMR07-05941]
  2. U.S. DOE [DE-AC02-05CH11231]

向作者/读者索取更多资源

We investigate the origin of superconductivity in boron-doped silicon carbide using a first-principles approach. The strength of the electron-phonon coupling calculated for cubic SiC at the experimental doping level suggests that the superconductivity observed in this material is phonon mediated. Analysis of the 2H-SiC, 4H-SiC, 6H-SiC, and 3C-SiC polytypes indicates that superconductivity depends on the stacking of the Si and C layers and that the cubic polytype will exhibit the highest transition temperature. In contrast to the cases of silicon and diamond, acoustic phonons are found to play a major role in the superconductivity of silicon carbide.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据