4.6 Article

Time evolution of correlations in strongly interacting fermions after a quantum quench

期刊

PHYSICAL REVIEW B
卷 79, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.155104

关键词

ballistic transport; critical points; fermion systems; renormalisation

向作者/读者索取更多资源

Using the adaptive time-dependent density-matrix renormalization group, we study the time evolution of density correlations of interacting spinless fermions on a one-dimensional lattice after a sudden change in the interaction strength. Over a broad range of model parameters, the correlation function exhibits a characteristic light-cone-like time evolution representative of a ballistic transport of information. Such behavior is observed both when quenching an insulator into the metallic region and also when quenching within the insulating region. However, when a metallic state beyond the quantum critical point is quenched deep into the insulating regime, no indication for ballistic transport is observed. Instead, stable domain walls in the density correlations emerge during the time evolution, consistent with the predictions of the Kibble-Zurek mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据